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In this supplement, we let architectures refer to both a single architecture, e.g. a, ab, and a multiset
(unordered list) of architectures, e.g. {a}, {ab}, {a, ab}, {a, a, ab}. Architectures can therefore be assigned to
both genes (using the single architecture definition) and to entire species (using the multiset of architectures
definition).

1 Modeling architecture rearrangements

Consider the problem of transforming a parent architecture to a child architecture. We represent these
architectures as directed acyclic graphs, where the in-degree and out-degree of a node are each at most one.
A module is indicated by a node, and neighboring modules within the same gene are joined with a directed
edge. The problem is now equivalent to transforming from the parent graph to the child graph, where each
allowable graph operation corresponds to an evolutionary event (Figure 1e):

• G: Add a node (corresponding to a module that does not currently exist).

• D: Duplicate a node.

• L: Remove a node.

• M : Add an edge between two (existing) nodes.

• S: Remove an edge between two (existing) nodes.

Note that these definitions require that generation, duplication, and loss occur at the module level. For
example, generating a sequence of multiple modules is only possible through generation of the component
modules. This assumption treats modules as the basic building blocks of a gene and implies that the
generation, duplication, and loss of larger sequences (as measured by the number of modules) incur a higher
cost.

Evolutionary events are applied in the following order: generation, duplication, loss, split, merge. There
are also some caveats to account for the architecture representation. For example, we allow for the duplication
and loss of entire architectures or sub-architectures, where the cost of duplication/loss corresponds to the
number of modules duplicated/lost. Furthermore, the duplicated (sub-)architecture retains all the edges of
the original, and edges within a lost (sub-)architecture can be removed without penalty. Duplication/loss of
a sub-architecture may also incur one or two (hidden) splits, depending on whether the left and right end
of the sub-architecture were connected to another module in the parent architecture; this prevents parental
sub-architectures from appearing in isolation in the child without penalty. Finally, merges are free between
two generated modules (but not between a generated module and an existing module); this allows for the
generation of architectures in addition to the generation of modules.

Note that with this representation, there is a one-to-one mapping between nodes in the parent and child
graphs (using the “null” node as the parent of a generated node and the child of a lost node). Tracing
this mapping for each module in a reconstructed architecture scenario reveals the series of generations,
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duplications, and losses that have led to the extant module counts, and tracing the addition or removal of
edges across the mappings reveals the series of merges and splits that have led to the extant architectures.

To demonstrate the robustness of our architecture model, consider the case of a duplicated sub-architecture.
For example, rearranging parent architecture A = {abc} to form child architecture B = {ab, abc} would infer
a duplication of module a, a duplication of module b, and a (hidden) split between modules b and c. Note
that (1) the original parent architecture abc is retained in B (with no inferred events), (2) no merge event
is required between a and b since the multi-module sub-architecture ab arose from abc, and (3) a (hidden)
split is inferred to account for the missing edge between b and c when ab is duplicated from abc.

2 Architecture scenario reconstruction

STAR-MP is a maximum parsimony algorithm for reconstructing the architecture scenario such that the
total evolutionary cost is minimized. That is, for each architecture family, given the known species tree,
the known architectures at the leaves, and the (inferred) module counts at the ancestors, STAR-MP infers
the architectures at the ancestors and the events that occur along the branches. Here, we describe our
architecture model and present the pseudocode for STAR-MP, which was described in brief in Reconstructing

architecture scenarios . In the pseudocode, details may be omitted for clarity.

2.1 Notation

• T : the rooted, full, binary species tree, with nodes N(T ), edges E(T ), root R(T ), and leaves L(T )

• n ∈ N : a node with parent np and left and right children nl and nr

• A: an architecture with modules Ar

• x ∈ {G, D, L, M, S}: an evolutionary event with associated costs cost(x)

• e = {xi}: a (multi)set of events

• P (n): the modules at node n

• Q(n) ∈ {Ai}, Q
∗(n) = A: the possible architectures, and the optimal (min-cost) architecture, at node

n

• E(A, B) = e, Cost(A, B) ∈ [0,∞): the optimal set of events and the optimal cost to transform archi-
tecture B to architecture B

• F (n, A): the optimal cost-to-go of assigning architecture A to node n, e.g. the optimal cost of events
up to node n such that Q∗(n) = A

• G(n, A): the traceback pointer for F (n, A)

• H(n, nl), H(n, nr): the optimal events along edges n → nl and n → nr

We also define the following operations on architectures: A + B is the architecture containing the archi-
tectures in A and B, A ∪ B is the multiset of architectures that appear in either A or B, and A ∩ B is the
multiset of architectures that appear in both A or B. For example, if A = {a, ab} and B = {a, bc}, then
A+B = {a, a, ab, bc}, A∪B = {a, ab, bc}, and A∩B = {a}. Similar operations will also be used for modules.
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2.2 Pseudocode

Input: T , cost(x) ∀x ∈ {G, D, L, M, S}, P (n) ∀n ∈ N(T ), Q(n) ∀n ∈ L(T )
Output: The reconstructed architecture scenario, as defined by Q∗(n), H(n,nl), H(n, nr) ∀n ∈ N(T )

/* Initialization */

for n ∈ L(T ) do
F (n, Q(n)) = 0

end

/* Recursion */

for n ∈ N(T ) (post-order traversal) such that n /∈ L(T ) do
// Determine possible architectures

Q(n) = ∅
for B ∈ Q(nl), C ∈ Q(nr) do

update Q(n) with archgen(P (n), B, C)

end

// Determine min-cost-to-go architecture

for A ∈ Q(n) do
// Determine rearrangement cost

for B ∈ Q(nl) ∪ Q(nr) do
E(A,B), Cost(A, B) = archeventcosts(A,B,{cost})

end

// Find optimal

for B ∈ Q(nl), C ∈ Q(nr) do
J(B, C) = F (nl, B) + Cost(A,B) + F (nr, C) + Cost(A,C)

end
G(n, A), F (n, A) = arg min /minB∈Q(nl),C∈Q(nr) J(B, C)

end

end

/* Termination */

Q∗(R(T )), F ∗ = arg min / minA∈Q(R(T )) F (R(T ),A)

/* Traceback */

for n ∈ N(T ) (pre-order traversal) such that n /∈ L(T ) do
Q∗(nl), Q

∗(nr) = G(n, Q∗(n))
H(n, nl), H(n, nr) = E(Q∗(n), Q∗(nl)), E(Q∗(n), Q∗(nr))

end

return Q∗(n), H(n, nl), H(n, nr) ∀n ∈ N(T )

Algorithm 1: STAR-MP pseudocode. Given the species tree, the ancestral module counts, and the
extant architectures, STAR-MP reconstructs the architecture scenario by inferring the ancestral archi-
tectures and the events along the branches. Note that an explicit cost cost(G) for generation is not
required since modules are generated at the LCA of all species with the module. Code to account for
ties is omitted for clarity; ties were broken arbitrarily in our implementation.
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Input: set s of modules at the parent, children architectures B and C
Output: possible parent architectures

A = empty architecture
a = set of modules from s

/* Heuristic 1: If architecture arch appears in both children B and C and there are enough

constituent modules in the parent, then that architecture must appear in the parent A. */

if there are enough modules in s to cover all architectures in B ∩ C then
for arch in B ∩ C do

add arch to A
remove modules in arch from s

end

end

if s = ∅ then // no parent modules left so return A
yield A and stop iteration

end

/* Heuristic 2: If modules u and v are in both children B and C and there is no path u → v
in either B or C, then there cannot be a path u → v in A. A path exists between any two

modules u, v where u appears prior to v in the same gene. */

paths = ∅ // allowable paths in the parent

for u ∈ a, v ∈ a s.t. u 6= v do
if u ∈ Br ∩ Cr, v ∈ Br ∩ Cr then

if (u, v) ∈ paths of B ∨ (u, v) ∈ paths of C then add (u, v) to paths; // u → v exists in B or C
else add (u, v) to paths; // at least one of u or v is missing from B or C

end

/* Heuristic 3: If both B and C contain u and v only in merged form uv, then u and v must be

in merged form uv in at least one architecture of A. */

reqs = empty dictionary // required paths and whether the path is found

for u ∈ a, v ∈ a s.t. u 6= v do
if u ∈ Br ∧ u ∈ Cr ∧ v ∈ Br ∧ v ∈ Cr then

if u has 1 child ∧ v has 1 parent ∧ child of u = v ∧ parent of v = u then
// add requirement and whether it is satisfied by A
if (u, v) in A then reqs[u, v] = True else reqs[u, v] = False

end

end

end

/* Find allowable architectures using the remaining set of modules. For a set S,
powersetorderedsubsets(S) is the set of all ordered subsets of S. */

aarchs = set of architectures from A // set of allowable parent architectures

for arch ∈ powersetorderedsubsets(set(s)) s.t. arch is not empty ∧ arch /∈ aarchs do
if ∃(u, v) ∈ arch s.t. (u, v) /∈ paths then continue; // fails allowable paths

add arch to aarchs
end

/* Now we have the allowable parent architectures so find the number of each architecture

instance to satisfy the required parent modules. */

for partition P of s s.t. ∀arch ∈ p, arch ∈ aarchs do
// check if required merged modules are satisfied

reqs copy = copy of reqs
for arch ∈ P , (u, v) ∈ reqs s.t. (u, v) ∈ arch do reqs copy[u, v] = True
if any reqs copy failed then continue

// everything is satisfied

yield A + P
end

Algorithm 2: archgen pseudocode for generating possible architectures. Given the available
modules at the parent and the children architectures, archgen finds the possible parent architectures.
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Input: parent architecture A, child architecture B, evolutionary costs costs
Output: the optimal series of events and the optimal cost required for the rearrangement

/* Remove architectures that appear in both parent and child */

for arch ∈ A ∩ B do
// do not remove if it is the last instance in the parent so it can be used in duplication

if count of arch in A > 1 then
remove arch from A and from B

end

end

/* Make graph representations */

GA, GB = directed graph representations of A and B

/* Generate/Duplicate/Lose modules through GDL, then Merge/Split modules through MS */

E = empty list // series of events required for rearrangement

for (EGDL, GGDL, gen, splits) ∈ GDL(Ga, Gb) do
for EMS ∈ MS(GGDL, GB, gen, splits) do

// put GDL and MS events together and store

append EGDL + EMS to E
end

end

/* Find optimum: findcost(e, costs) determines the total cost of events e given costs costs */

E∗, C∗ = arg min / mine∈E findcost(e,costs)
return E∗, C∗

Algorithm 3: archeventcosts pseudocode for finding the optimal events and cost for an
architecture rearrangement. Given a parent architecture, a child architecture, and the cost of
evolutionary events corresponding to elementary graph operations, archeventcosts finds the optimal
series of events and the optimal cost to transform the parent architecture to the child architecture.
This is split into two parts: (1) generation, duplication, loss, and possibly split of modules until the
parent and child architecture have the same number of modules, and (2) merge, split of modules until
the parent architecture and child architecture are equivalent.
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Input: parent architecture graph GA, child architecture graph GB

Output: series of events, resulting graphs, generated modules, and incurred splits for the rearrangement

/* Generations - modules are generated (and then possibly duplicated) as single modules */

EG = empty list // list of events due to generation (and duplication of generated modules)

gen = ∅; duplst, loselst = empty dictionaries // generated module and dicts of [reg,# of dups/losses]

for reg ∈ set of modules in GA and GB do
a, b = count of reg in GA and GB

if a = b then continue ; // no change in module count

else if a = 0 then // gen + dups
add reg to gen, add b instances of reg to GA, append GEN of reg and b − 1 DUP of reg to EG

else if a < b then duplst[reg] = b − a ; // dups

else if a > b then loselst[reg] = a − b ; // losses

end

// no dups of existing modules and no losses

if duplst is empty ∧ loselst is empty then yield EG, GA, gen, ∅ and stop iteration

/* Duplications - one element for each combination of dups. Also keep track of duplication

sources (map from duplicated child module to source parent module). */

ED, GD, dupmap = empty lists // lists of events, graphs, and maps due to duplication

if duplst is empty then append copy of EG, copy of GA, empty map to ED, GD, dupmap ; // no dups

else
// duplicate parent architectures until there are enough modules - Afterwards, there may be

extra modules due to multi-module duplications. These will be lost in the Loss phase.

for each unique combination todup of architectures to duplicate s.t. the counts in duplst are satisfied do
E,G, map = copy of EG, copy of GA, empty map; append E,G, map to ED, GD, dupmap
for arch ∈ todup do add arch to G, add DUP of reg (∀reg ∈ arch) to E, update map

end

end

/* Losses - one element for each combination of dups/losses */

for E, G, dmap ∈ ED, GD, dupmap do
recalculate loselst (as in Generation phase) // recalc due to presence of extra duplicated modules

if loselst is empty then yield copy of E,copy of G,gen,∅ and continue ; // no losses

// calculate losses for each combination of lost nodes

for each unique combination tolose of modules to lose s.t. the counts in loselst are satisfied do
EL, GL = copy of E, copy of G

// remove modules

splits = ∅ // count a split (from source) only once

for u ∈ tolose do
// Consider t − u − v and ts − us − vs, where ns = dmap[n] (e.g. dup source) if n arose

from a dup and ns = n o.w. For each edge, remove the edge, and incur a split if

both modules are not lost and the source of the edge was not already split.

if ∃t, remove (t, u) from GL, add (ts, us) to splits, append SPLIT of (t, u) to EL if (ts, us) /∈ splits
do same for (u, v) and (us, vs)

// remove the module

remove u from GL, append LOSS of u to EL

end

// remove redundancies (duplication and loss of same node)

for u ∈ dmap ∩ tolose do remove DUP of u and LOSS of u from EL

yield EL, GL, gen, splits
end

end

Algorithm 4: GDL pseudocode for rearranging architectures through genera-
tion/duplication/loss events. Given a parent architecture and a child architecture, GDL finds the
series of generation/duplication/loss events so that the resulting parent and child architectures have the
same number of modules. Note that (1) which nodes are duplicated affects resulting architectures and
possibly incurs extra splits and losses, and (2) which nodes are lost affects resulting architectures and
possibly incurs extra splits; thus, GDL considers each possible combination of duplications and losses.
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Input: parent architecture graph GA, child architecture graph GB, generated modules gen, incurred splits
splits during generation/duplication/loss

Output: series of events required for the rearrangement

/* Remove architectures that appear in both GA and GB */

for arch ∈ GA ∩ GB do
remove arch from GA and GB

end

/* No merge/splits if no architectures left */

if GA is empty ∧ GB is empty then
yield empty list and stop iteration

end

/* Permute the nodes of one graph to look at all node-to-node assignments between graphs */

for pairwise assignment of nodes between GA and GB s.t. paired nodes have same module type do
// add/remove edges (incur M/S events)

Gcopy
A = copy of GA

E = empty list

// split (remove edge from Gcopy
A ) - must do first in case of insertion/deletion

for (uA, vA) ∈ GA do
(uB, vB) = assignment of (ua, va) from GA to GB

if (uB , vB) /∈ GB then
remove (uA, vA) from Gcopy

A

// do not penalize if this split was already incurred during duplication/loss

if (uA, vA) /∈ splits then
(u, v) = module types corresponding to (uA, vA)
append SPLIT of (u, v) to E

end

end

end

// merge (add edge to Gcopy
A )

for (uB , vB) ∈ GB do
(uA, vA) = assignment of (uB , vB) from GB to GA

if (uA, vA) /∈ GA then
add (uA, vA) to Gcopy

A

// do not penalize if both u and v were generated

if u /∈ gen ∨ v /∈ gen then
(u, v) = module types corresponding to (uB , vB)
append MERGE of (u, v) to E

end

end

end

yield E
end

Algorithm 5: MS pseudocode for rearranging architectures through merge/split events.
Given a parent architecture and a child architecture, MS finds the series of merge/split events so that
the resulting parent and child architectures are equivalent.

3 Using domain annotations

As noted in the main text, the step of ‘identifying modules and module families’ in our phylogenomic pipeline
may be replaced by a database search against existing domains (e.g. Pfam, SCOP, SMART, CDD, etc). We
have chosen to use a de novo approach to module identification rather than using a domain database search
for a number of reasons.

Our main reason is that we wished to make no a priori assumptions about the identity or boundaries
of the modules. As mentioned in the main text, domain databases are often biased, for example, towards

7



domains with known structures or function. However, our definition of modules is evolutionarily-based and
depends solely on sequence conservation.

An analysis of genome coverage (excluding singleton domains or modules) also revealed that only 62%
of Drosophila genes have Pfam annotations compared to 82% of genes with module annotations. If we
include singleton domains/modules, the change in coverage for Pfam annotations is negligible while the
coverage for module annotations increases to 85%, with the remaining 15% of genes lacking BLAST hits
that pass our filters. We believe that this difference in coverage is because our approach captures both
known and unknown domains; in particular, it captures domains that are evolutionarily (rather structurally
or functionally) conserved.

In addition, domain definitions are compiled using genomes across the three domains of life, meaning
that domain families may be overclustered when looking at a small subset of genomes such as the ∼60 myr
Drosophila clade. (Recall that gene and domain families are defined as the set of genes/domains that descend
from a single gene/domain in the most recent common ancestor of all species under consideration. Therefore,
restricting the genomes to a small subset will break the original families into many smaller clusters.) A major
benefit of our approach is that it can be used at multiple timescales: we can look across the three domains
of life as in domain databases, or we can find novel clade-specific domain families that may be missing from
domain databases, as in our analysis of Drosophila. For comparison, ADDA found a number of novel domain
families missing from Pfam and SMART, with the majority of these new families specific to a single domain
of life. Such novel domain families may also be present within the Drosophila phylogeny (perhaps to confer
clade-specific biological functions), and a such using domain definitions compiled across all three domains of
life may lack the power to detect such recently evolved families.

Our approach can also capture known and unknown domains and neutral evolutionary events. In par-
ticular, we can identify modules linked to a protein function but associated with an unknown domain. This
is important, as we are also interested in analyzing genome-wide event rates (or counts), and if we focus on
the subset of genes in which the merged or split domain has a known function, these rates (counts) may be
biased.

Finally, our approach has a higher power than a database search, and moreover, it can be applied to
newly sequences genomes to discover new modules. In particular, we can analyze a group of closely related
genomes that are together distant from other genomes. As mentioned previously, our method will find novel
domain families that have evolved solely within the newly sequenced clade without requiring these families
to be defined in domain databases.

4 Promiscuous modules

Analysis in our main text (Results) excluded promiscuous modules in our pipeline. Including these in
our analysis decreased the number of architecture families to 14,156 (1.8% decrease), with 4201 families
containing more than one module (0.03% decrease in ratio of # families with ≥ 2 modules/# families) and
4037 families containing a fusion or fission (<0.01% decrease in ratio). These “fusion/fission” families consist
of 12,567 module families (0.2% increase) covering 46,100 sequences (0.2% increase) and involve at least one
gene from 4533 (36.8%) of gene families (0.6% increase). As expected, the distribution of architecture families
also shifted; for example, there would be 11 families with more than 20 modules and 22 families with more
than 50 sequences (compare to Figure 6). Such increases are particularly problematic for our STAR-MP
architecture reconstruction algorithm and would likely result in increased runtime or be too complicated for
MP reconstruction.

5 Incorporating known rates of evolutionary events

We have incorporated known tendencies in event costs where applicable in our pipeline; for example, we used
known estimated duplication and loss rates in Drosophila (Hahn et al. 2007) to reconstruct module phylo-
genies with SPIMAP. However, systematic studies of merge and split events (Snel et al. 2000, Kummerfeld
and Teichmann 2005, Fong et al. 2007) have only determined total counts or merge-to-split ratios, and these
are neither specific to the Drosophila clade nor do they incorporate architecture counts. The few studies on
fusion and fission in Drosophila (Zhou et al. 2008, Rogers et al. 2009) focus on a subset of species and on
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genes with significant experimental evidence. In contrast, it takes a systematic, genome-wide approach to
determine event rates that are unbiased and reflective of the entire genome.

6 Cost of evolutionary events

We analyzed a subset of 200 families using varying event costs. Note that the cost of generation does not
affect STAR-MP reconstructions since each module is assumed to have been generated only once at the most
recent common ancestor of all species that contain the module. In addition, in our current implementation,
duplication and loss costs also have limited effect since ancestral counts are inferred using the reconstructed
module phylogenies, and a module that is duplicated and subsequently lost along the same branch does not
incur any cost.

We tested six settings for the event costs: one in which all events were equal (as in the main text), four
in which a single event (D,L,M,S) had twice the cost of the others, and one in which merges and splits were
twice the cost of generations, duplications and losses. For each setting, we summed the number of inferred
evolutionary events of each type, then computed its deviation from the inferred counts under equal costs.
All deviations were less than 3.7% except for four cases: when merges had double the cost, the number of
merges decreased by 23.9% and the number of splits increased by 20.3%, and when splits had double the
cost, the number of merges increased by 36.6% and the number of splits decreased by 26.8%. Furthermore,
while the number of inferred regions are the same across all settings (since we have used the same input
module trees), the number of genes for a doubled merge cost decreased by 2.4% and for a doubled split cost
increased by 2.9%. This is consistent with our expectations, as a higher merge cost should result in a larger
number of merged ancestral genes (e.g. fewer genes given the same number of modules) so that fewer merges
and more splits are inferred. Similarly, a higher split cost should result in a larger number of split ancestral
genes (e.g. more genes given the same number of modules) so that more merges and fewer splits are inferred.

However, in this smaller set of families, each reconstruction contributes a larger portion to the total
number of events; thus, many deviations could be attributed to the small number of families that have
multiple maximum parsimonious reconstructions. (Remember that ties are broken randomly.) If we consider
the 143 families for which only a single maximum parsimonious reconstruction exists for every setting, almost
all deviations drop two-fold or more. For this filtered set, all deviations were less than 1.1% except for two
cases: when splits have double the cost, the number of merges increased by 22.0% and the number of splits
decreased by 9.1%. Note that a doubled merge cost negligibly affects the inferred evolutionary events, and
that the deviations in merge and split counts for a doubled split cost have dropped. We believe that many of
the deviations for the doubled split cost are due to cases in which an architecture is partially lost. Here, the
high split cost causes STAR-MP to infer a split ancestral gene when other parameter settings would infer a
merged ancestral form. (See also Supplemental Section 7.3.)

Our analysis shows that in almost all cases, the balance of inferred events is maintained since these
events are constrained by the evolutionary evidence. Significant deviations may be seen if a higher split cost
is used, but then, a larger number of merges and a lower number of splits will be inferred, which would
further support our findings that merges are more prevalent than splits ( Common trends in architecture

scenarios revealed by STAR-MP reconstruction).

7 Validation

7.1 Detection of undercollapsed scaffolds

The BLASTp hits of a species versus itself were filtered to retain hits between genes located on different
scaffolds and with percent identity ≥ 95%. These were run through LALIGN using nucleotide sequences
extended to ± 2000 nt upstream and downstream, and hits with percent identity ≥ 98% were retained. An
architecture family is said to contain possibly undercollapsed scaffolds if at least two genes within the family
have a hit in this final list.
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7.2 EST and mRNA-seq evidence

ESTs were obtained from GenBank and compared against the protein sequences using BLASTx. Only hits
with long ESTs (≥ 250 nt), e-value ≤ 1 × 10−5, percent identity ≥ 96%, and alignment length ≥ 50 aa
were retained. If a single EST aligned to the same sequence in multiple places, the alignment with the
highest percent identity was retained. An EST is said to span two genes if it aligns with both genes and the
alignments are in the same direction and overlap by ≤ 15 aa.

mRNA-seqs at 36 and 75 nt resolution were obtained from modENCODE (http://www.modencode.org).
Briefly, this protocol used polyA RNA extracted from D. melanogaster, D. pseudoobscura, and D. mojavenis

male and female heads, with sequences aligned to the genome with Bowtie allowing for up to two mismatches.
We mapped the mRNA to genes based on genome location, and an mRNA-seq was said to span two genes
if it aligns with both genes and the alignments are in the same direction and do not overlap.

7.3 Simulations under various event rates

Keeping the generation rate constant at 1X the estimated true rate, we set the duplication, loss, merge, and
split rates at 1X, 2X, and 4X the estimated true rates. We tested five different settings, simulating 1000
architecture scenarios for each setting (Supplemental Figure S2).

In general, STAR-MP has higher precision than sensitivity for any given event, and performance tends
to degrade as the event rates increase and the true architecture scenarios become more complicated. In-
deed, part of the decrease in sensitivity can be attributed to trying to explain more complex architecture
scenarios with a conservative MP algorithm. STAR-MP also tends to have higher generation, duplication,
and loss performance than merge and split performance, and as expected, generation, duplication, and loss
performance is consistent across various merge and split rates. Interestingly, merge performance is typically
higher than split performance. Further investigation showed that low split performance can be attributed
to cases in which an architecture is partially lost. Here, the true reconstruction is a merged parent architec-
ture undergoing a split and loss to result in the surviving sub-architecture; however, STAR-MP tended to
reconstruct a split parent architecture so that only a loss is needed to produce the surviving sub-architecture.

7.4 Support for fusion and fission events using transcript evidence

We excluded from this analysis the 6.1% (249/4107) of merge/split scenarios have no merge or split events.
This occured since we determined merge/split families based solely on the clustering of architectures into
architecture families. However, all merge and split events in the family may have occurred prior to the
species tree root; such a case can only be determined after the architecture scenario reconstruction.

Consider a merge or split event between two modules, as found by our architecture scenario reconstruction
algorithm. Each of these events bifurcates the leaves, with one subset containing the leaves belonging in
the subtree descended from the event, and the other subset consisting of the the rest of the leaves. We
denoted these sets as the merged genes or split genes, respectively, if we were considering a merge event, or
vice-versa if we were considering a split event. A merged gene was classified as consistent if there existed
at least one EST/mRNA-seq that covers the boundary between the modules, and as unknown otherwise.
(Note that we did not allow a merged gene to be inconsistent with the evidence.) A split gene was classified
as inconsistent if there existed at least one spanning EST (mRNA-seq) (Supplemental Section 7.2) for the
gene, as consistent if there existed an EST but no spanning EST (mRNA-seq), and as unknown otherwise.
Once the genes were classified, an event was classified as consistent if there existed at least one consistent

merged gene and at least one consistent split gene, as inconsistent if there existed at least one inconsistent

split gene, and as unknown otherwise. Finally, the events for each scenario were pooled, and each scenario
was classified as inconsistent if any event was inconsistent, as consistent if all events were consistent, and as
unknown otherwise.

8 No substitution rate bias in merge/split families

Analysis of Adh-derived chimeric genes previously revealed elevated rates of amino acid substitution after
merge events (Long and Langley 1993, Jones et al. 2005, Jones and Begun 2005). It was speculated that
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the new function of the chimeric gene no longer required strong conservation, or that amino acids along the
merge boundary rapidly evolved to repair any possible damage incurred by the merge event. To examine
whether this bias occurs at a systematic level, we computed the substitution rate for each module family
(Supplemental Figure S5) using the SPIMAP model of assigning a gene-specific (here module-specific) rate
and species-specific rate to each tree (Rasmussen and Kellis 2007; 2010). Notice that while the distributions
are significantly different, the effect size is small (fold of median rates = 0.970–0.975). Furthermore, contrary
to the results with Adh, we found that modules in merge/split families tend to have lower substitution rates
than average. We believe that this discrepancy may be attributed to limitations in our model. For example,
we computed rates across entire module trees, but it may be more appropriate to compute separate rates for
portions of the tree affected and not affected by the merge/split event. We also did not consider differences
in composition across species, which may confound the gene-specific and species-specific rate. Finally, we
question whether an elevated substitution rate is indeed expected, since it is also plausible that modules
should be more conserved after merge/split events in order to maintain functionality; that is, modules that
undergo many substitutions may lose functionality and degenerate into pseudogenes.

9 GO term and Pfam domain enrichment/depletion

Enrichment/depletion values were computed using GOseq (Young et al. 2010) to correct for possible length
(Supplemental Figure S4) and substitution bias (Supplemental Section 8, Supplemental Figure S5) in the
data. Briefly, GOseq determines a probability weighting function that quantifies how the probability of a
gene selected out of the reference set changes as a function of some external variable such as transcript length.
It then resamples the genes many times, weighting the probability of choosing a gene using this function,
and uses the resulting sampling distribution to calculate a p-value. Alternatively, GOseq uses the Wallenius
non-central hypergeometric distribution to approximate p-values; we use this approximation in our analysis.
p-values were corrected separately for length bias and substitution bias; correction for substitution bias did
not change the set of enriched/depleted terms, so only the correction for length bias is shown in the main
text.

For gene functions, we looked at gene ontology (GO) annotations for D. melanogaster, as the other
species have little to no GO annotation. Only GO terms with experimental evidence were retained, and a
gene with a GO term was expanded to also include all parent GO terms. D. melanogaster genes contain
4524 unique GO terms, 3327 of which are found in genes that participate in architecture families with
merges or splits. Enrichment/depletion values were computed separately for each of the three ontologies
biological process, cellular component, and molecular function. For domains, we looked at Pfam domains for
all species. The Drosophila clade contains 3204 unique Pfam domains, 1510 of which are found in genes that
participate in architecture families with merges or splits. After correcting for length bias, no Pfam domains
were significantly enriched or depleted (hypergeometric test, p < 0.001, FDR correction).

10 Functional complementarity using DroID database

Rather than looking at shared GO terms, we searched for gene partners against the Drosophila interactions
database (DroID) (Yu et al. 2008) (April 2010 release). Of the 1222 gene partners, 589 are those in which
both genes have at least one known PPI (but not necessary with each other) and 135 (22.9% of 589) are
those in which the genes are known to interact with each other. This is compared to 0.3% random (fold =
75.74, p < 0.001).

Using a set of high confidence interactions in which we retain only PPI with experimental evidence
(discarding those detected through homology), these numbers reduced to 57 gene partners in which both
genes have at least one known PPI, 24 (42.1%) in which the genes are known to interact with each other,
and 0.38% random (fold = 110.53, p < 0.001). However, low counts means that we must take care in making
any biological statements.
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11 PPI in conservative set of architecture families

Using the conservative set of architecture families, we identified 222 gene partners within D. melanogaster.
Of these, 33 gene partners have both genes annotated with GO terms, and 30 (90.9% of 33) share at least
one GO term, compared to 61.8% random (fold = 1.47, p < 0.001). Using the DroID database, 140 gene
partners are those in which both genes have at least one known PPI and 48 (34.3%) are those in which the
genes are known to interact with each other, compared to 0.3% random (fold = 107.05, p < 0.001). Using
the set of high confidence interactions, these numbers reduced to 16 gene partners in which both genes have
at least one known PPI, 5 (31.3%) in which the genes are known to interact with each other, and 0.37%
random (fold = 83.48, p < 0.001).

12 Detection of frameshift mutations

To investigate how often nucleotide similarity is not propagated to peptide similarity, we ran pairwise all-
vs-all tBLASTx between the species, then post-processed the alignments with LALIGN and filters (e-value
≤ 1 × 10−5 and percent identity ≥ 80%; a higher threshold for percent identity was used to account for the
smaller nucleotide alphabet). We found 2740 hits at the nucleotide level but not at the peptide level, 130,422
hits at both the nucleotide and peptide level, and 345,554 hits at the peptide level but not at the nucleotide
level. This translated to 1429 additional genes that may participate in a merge/split architecture family;
note that the actual number of additional genes that participate in merge/split families is likely smaller than
this count. For example, some of the genes may be part of families in which each gene consists of a single
module, and the module is simply frameshifted in some genes, or some of the frameshift mutations may be
a result of frameshift sequencing errors.

13 Systematic detection of gene fusion and fission by mechanism

13.1 Fusion/fission of adjacent genes

Two modules that merge or split were tagged if they were found in neighboring genes and the modules would
be adjacent if the neighboring genes were considered as a single gene. This list was expanded to genes by
looking for all genes with these tagged modules and including only those genes that are neighboring or are
found in species descended from the most ancestral branch with a merge or split of the modules. Note that
this list of genes includes both parental and children genes (e.g. pre- and post-merge/split genes), as this
allows for ambiguities that may have arisen from ties in the MP reconstruction (e.g. one MP reconstruction
finds split genes at the root followed by a merge along one branch, whereas another reconstruction finds a
merged gene at the root followed by a split along the other branch). We also tested for experimental support
for each gene by looking at EST and mRNA-seq data. Using our previously determined set of spanning ESTs
(mRNA-seqs) (Supplemental Section 7.2), we called a gene consistent if all of the associated fragmented genes
had EST (mRNA-seq) evidence but none were part of a spanning EST (mRNA-seq), inconsistent if at least
one of the associated fragmented genes was part of a spanning EST (mRNA-seq), and unknown otherwise.

Genes that may have resulted from large-loop mismatch repair and replication slippage were detected by
looking for merged genes flanked by (but not necessarily next to) two genes, with one gene containing one
of the merged modules and the other gene containing the other merged module.

13.2 Retrotransposition and exon shuffling

While retrotransposition and exon shuffling are two separate mechanisms for novel gene formation, it has
been suggested that retrotransposition is a driving mechanism for mediating exon shuffling (Gilbert et al.
1995), and exon shuffling by retrotransposition is one method for conferring novel gene functions to the
resulting chimeric gene rather than allowing the retrosequence to degenerate into a psuedogene (Long 2001).
To find retrotransposed-mediated exon shuffling events, we searched for modules that undergo a merge or
split and that have multiple exons in at least one gene with merged form and a single exon in at least one gene
with split form. This ignores possible retrotranspositions of single-exon genes which cannot be distinguished
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in our analysis from simple duplication. Exon comparison was performed at the module level to allow for
(1) a chimeric gene to result from a multi-exon parent fusing with a second retrotransposed parent, and (2)
partial gene retrotransposition. Furthermore, each merge or split formed a bifurcation of the species tree,
and the merged form and split form must belong to different subtrees formed from this bifurcation. Only
genes where the module has a single exon were included in the final count.

13.3 Duplication-degeneration

We constructed syntenic modules by defining a syntenic block to be at least three genes within 200 kb of
each other with no other blocks in between. Two genes are the result of duplication-degeneration if (1) they
result from a split, and (2) they belong to different syntenic blocks but have hits to the same syntenic block.
False detection could occur due to faulty syntenic blocks. For example, a missed connection between two
scaffolds may result in one syntenic block being separated into two blocks. As a simple test, we checked
whether both genes are located at the ends of their respective scaffolds; 36 modules and 50 genes remain.
Note that this method of detection does not take into account the case of undercollapsed assemblies where
genes are located within the scaffolds.
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Supplementary Figures and Tables

STAR-MP ALGORITHMInput: species tree

              leaf architectures

              ancestral module counts
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Figure S1: STAR-MP algorithm. The forward phase of the STAR-MP algorithm performs a post-order traversal
of the tree (step 1), considering at each stage a triplet of one parent node and two child nodes. The available parent
modules (provided as input and found in our pipeline through reconciled module trees) and the possible children
architectures (provided as input if the child is a leaf node or found recursively if the child is an ancestral node) are
known. The possible parent architectures are generated through set permutations and pruned heuristically, and the
minimum costs-to-go of assigning a parent architecture is determined (see inset at bottom, where the parent node
under question is denoted by the ‘?’). The children architectures and events along the branches that led to this
minimum cost-to-go is also retained for later traceback. This is repeated until the root of the tree is reached (step 2),
at which point the minimum cost architecture is assigned to the root. The backward phase then performs a pre-order
traversal of the tree (step 3) to assign the ancestral architectures and events.
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Figure S2: Sensitivity and precision of STAR-MP in simulation under various event rates. See Figure 4
for details. Sensitivity decays dramatically as event rates increase, as is consistent with a conservative MP recon-
struction. In contrast, precision is robust to event rates. Event rate multipliers were obtained from the simulations
and differ from the input rate multipliers of N: (1,1,1,1), MS2: (1,1,2,2), MS4: (1,1,4,4), all2: (2,2,2,2), and all4:
(4,4,4,4) due to our approach of discarding events that were impossible with the given starting architecture.
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Figure S3: Correlation of module and exon boundaries. See Figure 5 for details.

Figure S4: Length bias. Genes in merge/split families tend to be longer than average. (Left) The distribution of
gene lengths, bin size = 50 aa. Median lengths for all genes and for genes in merge/split families were 361 aa and 492
aa, respectively; the distributions differed significantly (Mann-Whitney U = 3.22×109 , p < 2.23×10−308 , one-sided).
(right), The distribution of median gene lengths per architecture family, bin size = 50 aa. Median lengths for all
families and for merge/split families were 391 aa and 524 aa, respectively; the distributions differed significantly
(Mann-Whitney U = 3.19 × 107, p = 9.23 × 10−116, one-sided).
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Figure S5: No substitution rate bias. Genes in merge/split families have similar substitution rates compared
to average. (Left), The distribution of substitution rates across module families, bin size = 0.1 sub/site. Median
rates for all modules and for modules in merge/split families were 0.723 sub/site and 0.701 sub/site, respectively;
the distributions differed significantly (Mann-Whitney U = 1.35 × 108, p = 5.23 × 10−10, one-sided). (right), The
distribution of median substitution rates per architecture family, bin size = 50 aa. Median rates for all families and
for merge/split families were 0.744 sub/site and 0.725 sub/site, respectively; the distributions differed significantly
(Mann-Whitney U = 2.85 × 107, p = 1.73 × 10−4, one-sided).
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Figure S8: The inferred evolutionary history of GA28694 in D. pseudoobscura from CG4617 and
frizzled 4 (fz4). (A) The MP architecture scenario. Architectures 00821 and 05692-03769 are usually in separate
genes corresponding to CG4617 and fz4 orthologs. However, dpse contains the fused architecture 00821-03769 in
gene GA28694. (B), Along the dpse branch, the MP reconstruction infers the loss of module 22266 and duplications
of modules 00821 and 03769 followed by a merge to form 00821-03769. A (hidden) split is also inferred between 05692
and 03769 due to the sub-architecture duplication of 03769 from fz4 (05692-03769). (C ) A genome level view shows
that the orthologs of CG4617 and fz4 are adjacent in all species except dpse. In dpse, the new, fused gene GA28694
is located between CG4617 and fz4. (D) The inferred evolutionary history of GA28694 in dpse through duplication
and exon shuffling. We postulate that GA28694 was formed by tandem duplication of the chromosomal region
from CG4617 to fz4, followed by either large-loop mismatch repair or replication slippage to form the merged gene
GA28694. Duplication allows dpse to retain the original gene functions of CG4617 and fz4 and gain a new function
with GA28694. Note that while module 05692 is duplicated as part of the tandem duplication, it is subsequently lost
in dpse; thus, the MP reconstruction does not infer a duplication of 05692.
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Figure S9: The inferred evolutionary history of jingwei (jgw) in D. yakuba through retrotransposition
and exon shuffling of alcohol dehydrogenase (ADH ) and yellow emperor (ymp). (A) The MP architecture
scenario. (1) Along the branch leading the dyak, the MP reconstruction infers the duplication of modules 17143 and
00370 followed by their subsequent merge to form jgw. (2) Along branch leading the dmel, we see an interaction
between modules 17143 and 17258 to form ymp. However, there is strong evidence that the gene pairs GE10684 -
GE10685 and GG12235 -GG12236 are actually single gene orthologs of ymp. These gene break errors lead to an
incorrectly inferred ancestral architecture for ymp in which the modules 17143 and 17258 are found in separate genes
rather than fused in a single gene. (3) ADH consists of a single module 00370, and there are multiple copies of
this module in isolated form in many genomes. Multiple cases of fusions with ADH -derived modules have also been
found experimentally, suggesting that ADH may be enriched for fusion events. We find module 00370 fused to the
architecture 03541-01876 in dpse, which has not been previously found in literature. It is possible that GA25237 and
GA25238 are further examples of ADH -derived chimeric genes. (B) A genome level view of ymp reveals gene break
errors in the ymp orthologs. This is supported by exon structure and genome alignment and partially supported by
EST evidence: ymp in dmel has multiple full ESTs (e.g. ESTs span entire gene), and GE10684 and GE10685 in
dyak have multiple spanning ESTs, but none of GG12235 or GG12236 in dere nor GF17267 in dana have ESTs.
ADH is found on a different chromosome (scaffold). (C ) The inferred evolutionary history of jgw in dyak. ymp is
first duplicated to create a second copy yande (Long et al. 2003), then ADH is retrotransposed between the third
and fourth exons of yande followed by degeneration of the yande exons found after the insertion point. Exons in gray
represent exons that are not part of the longest transcript.
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species # genes # genes w/
EST

(mRNA-seq)

# gene pairs # gene pairs
w/ EST

(mRNA-seq)

# gene pairs w/
spanning EST
(mRNA-seq)

error rate
(%) of EST
(mRNA-seq)

# families w/
EST

(mRNA-seq)

# families w/
spanning EST
(mRNA-seq)

error rate
(%) of EST
(mRNA-seq)

dmel 4769 4439 (4455) 420 348 (333) 18 (10) 5.17 (3.00) 284 (296) 18 (10) 6.34 (3.38)
dyak 5604 429 806 18 4 22.22 17 4 23.53
dere 5169 1697 715 59 7 11.86 55 7 12.73
dana 4988 1804 655 92 11 11.96 77 11 14.29
dpse 5092 935 (4587) 618 30 (496) 6 (16) 20.00 (3.23) 23 (413) 6 (16) 26.09 (3.87)
dwil 4827 1592 507 69 7 10.14 58 7 12.07
dmoj 4797 1713 (4507) 640 62 (575) 10 (36) 16.13 (6.26) 55 (465) 10 (36) 18.18 (7.74)
dvir 4809 1847 654 81 12 14.81 77 12 15.58
dgri 5227 1777 651 75 3 4.00 64 3 4.69

total 45,282 16,233 (13,549) 5666 834 (1404) 78 (62) 9.35 (4.42) 451 (766) 52 (51) 11.53 (6.66)

Table S1: EST evidence for genes in merge/split families. See Table 1 for details. Similar statistics are also provided across architecture families, where
at least one gene pair must be present in the architecture family for it to be included in the count. Large error rates can be attributed to low counts.
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total consistent inconsistent unknown
EST mRNA-seq EST mRNA-seq EST mRNA-seq

scenarios 3858 583 (15.1%) 619 (16.0%) 48 (1.2%) 41 (1.1%) 3227 (83.6%) 3198 (82.9%)
merges 4876 1130 (23.2%) 1992 (40.9%) 54 (1.1%) 55 (1.1%) 3692 (75.7%) 2829 (58.0%)
splits 5659 1400 (24.7%) 1776 (31.4%) 32 (0.6%) 34 (0.6%) 4227 (74.7%) 3849 (68.0%)

Table S2: EST and mRNA-seq evidence for fusion and fission events. The number of consistent, inconsis-
tent, and unknown scenarios and events based on EST and mRNA-seq evidence. This data excludes the 249 families
without merges or splits in the reconstruction.

species # proteins # exons # modules O E O/E # domains O E O/E

dmel 14080 55172 19224 11810 285 41.49 18278 1405 610 2.30
dyak 16077 58629 20409 13008 337 38.60 18349 1471 604 2.44
dere 15044 55947 19448 12306 311 39.63 18309 1405 642 2.19
dana 15069 56304 17002 10553 205 51.44 18987 1542 698 2.21
dpse 16099 57556 16772 10323 183 56.54 19500 1592 692 2.30
dwil 15512 56273 15803 9754 160 61.10 18995 1537 669 2.30
dmoj 14594 54664 16949 10891 213 51.19 17529 1409 576 2.45
dvir 14491 54760 17258 11069 222 49.85 18026 1468 620 2.37
dgri 14982 56250 17590 11260 224 50.31 18855 1610 673 2.39

total 135948 505555 160455 100974 2138 47.23 166828 13439 5782 2.32

Table S3: Correlation of module boundaries and domain boundaries with exon boundaries. For each
species, the total number of proteins, exons, modules, and domains is provided. Furthermore, the observed and
expected number of exon-bordering module (the number of modules in which both boundaries are within ±10 aa of
an exon) and the fold percentage are provided. To calculate the expected number of exon-bordering modules, we
derived the probability P of an exon border falling onto any amino acid by dividing the total number of exon borders
by the total length of proteins. We also determined the total number T of amino acids within ±10 aa of any module
boundary. Based on a null hypothesis of randomly distributed exon borders, the product PT gives the expected
number of exon borders within ±10 aa of a module boundary; thus, the expected number of exon-bordering modules
is E = (PT/# exons)2(# modules). The same analysis is performed exchanging module with domains. P -values
were calculated based on a chi-square distribution (dof = 1), and all p-values satisfied p < 2.23 × 10−308. Column
sums may not equal total due to rounding of the expected value.

species
0-0 1-1 2-2 sym non-sym

O E O/E O E O/E O E O/E O E O/E O E O/E

dmel 9560 2071 4.62 67 1226 0.05 23 793 0.03 9650 4089 2.36 2160 7721 0.28
dyak 10779 2315 4.66 48 1340 0.04 23 860 0.03 10850 4515 2.40 2158 8493 0.25
dere 10168 2187 4.65 57 1269 0.04 23 815 0.03 10248 4271 2.40 2058 8035 0.26
dana 8594 1880 4.57 44 1077 0.04 27 705 0.04 8665 3662 2.37 1888 6891 0.27
dpse 8434 1807 4.67 49 1075 0.05 21 692 0.03 8504 3574 2.38 1819 6749 0.27
dwil 7876 1708 4.61 46 1026 0.04 18 645 0.03 7940 3379 2.35 1814 6375 0.28
dmoj 8978 1929 4.65 52 1104 0.05 20 740 0.03 9050 3774 2.40 1841 7117 0.26
dvir 9110 1942 4.69 61 1148 0.05 20 743 0.03 9191 3833 2.40 1878 7236 0.26
dgri 9225 1990 4.64 52 1168 0.04 19 747 0.03 9296 3905 2.38 1964 7355 0.27

total 82724 17829 4.64 476 10435 0.05 194 6739 0.03 83394 35003 2.38 17580 65971 0.27

Table S4: Intron phases of exon-bordering modules. For each species, we list the observed and expected
numbers of modules with the given intron-phase combinations, where a module is labeled with the phases of its
flanking introns. The expected numbers were calculated as in (Long et al. 2003). Specifically, assuming that any
two introns can flank an module, the expected number of modules with intron-phase (i, j) is given by Eij = PiPjN ,
where 0 ≤ i, j ≤ 2, Pi is the proportion of intron phase i actually observed, and N is the total observed number
of intron associations. P -values were also calculated based on a chi-square distribution (dof = 1), and all p-values
satisfied p < 2.23 × 10−308. Column sums may not equal total due to rounding of the expected value.

21



0-0 1-1 2-2 sym non-sym

species O E O/E O E O/E O E O/E O E O/E O E O/E

dmel 668 246 2.71 149 146 1.02 39 94 0.41 856 487 1.76 549 918 0.60
dyak 745 262 2.85 143 152 0.94 31 97 0.32 919 511 1.80 552 960 0.58
dere 693 250 2.78 137 145 0.95 41 93 0.44 871 488 1.79 534 917 0.58
dana 770 275 2.80 139 157 0.88 40 103 0.39 949 535 1.77 593 1007 0.59
dpse 784 279 2.81 164 166 0.99 38 107 0.36 986 551 1.79 606 1041 0.58
dwil 750 269 2.79 149 162 0.92 40 102 0.39 939 533 1.76 598 1004 0.60
dmoj 703 250 2.82 147 143 1.03 44 96 0.46 894 488 1.83 515 921 0.56
dvir 734 258 2.85 139 152 0.91 43 99 0.44 916 508 1.80 552 960 0.58
dgri 809 284 2.84 165 167 0.99 42 107 0.39 1016 558 1.82 594 1052 0.57

total 6656 2372 2.81 1332 1389 0.96 358 897 0.40 8346 4658 1.79 5093 8781 0.58

Table S5: Intron phases of exon-bordering domains. See Table S4 for details. All p-values satisfied p < 1×10−5

except for the 1-1 domains.

Table S6: Lineage-specific merge and split events.

species dist M S genesa % distb % M (ratio)c % S (ratio)c % distl
d % Ml (ratiol)

e % Sl (ratiol)
e

dmel 11.23 457 233 446 2.9 9.4 (3.2) 4.1 (1.4) 3.7 16.3 (4.4) 5.2 (1.4)
dyak 8.57 268 634 341 2.2 5.5 (2.5) 11.2 (5.1) 2.8 9.6 (3.4) 14.2 (5.0)
dere 8.57 233 340 341 2.2 4.8 (2.2) 6.0 (2.7) 2.8 8.3 (2.9) 7.6 (2.7)
dana 53.40 317 510 335 13.8 6.5 (0.5) 9.0 (0.7) 17.6 11.3 (0.6) 11.4 (0.6)
dpse 55.80 362 523 319 14.4 7.4 (0.5) 9.2 (0.6) 18.4 12.9 (0.7) 11.7 (0.6)
dwil 62.49 309 540 318 16.1 6.3 (0.4) 9.5 (0.6) 20.6 11.0 (0.5) 12.1 (0.6)
dmoj 32.74 283 546 295 8.4 5.8 (0.7) 9.7 (1.1) 10.8 10.1 (0.9) 12.2 (1.1)
dvir 32.74 301 403 335 8.4 6.2 (0.7) 7.1 (0.8) 10.8 10.8 (1.0) 9.0 (0.8)
dgri 37.11 269 735 314 9.6 5.5 (0.6) 13.0 (1.4) 12.3 9.6 (0.8) 16.5 (1.3)
total 302.65 2799 4464 3044 77.9 57.4 (0.7) 78.9 (1.0) - - -

aNumber of fused genes for which the split form consists of two adjacent genes.
bBranch length divided by the total branch length.
cNumber of merges or splits in this genome divided by the total number of merges or splits, and ratio of
(% M)/(% dist) or (% S)/(% dist).
dBranch length divided by the total leaf branch length.
eNumber of merges or splits in this genome divided by the total number of lineage-specific merges or splits,
and ratio of (% Ml)/(% distl) or (% Sl)/(% distl).

rank GO ID GO term k m fold p-value p-value q-value
1 GO:0007275 multicellular organismal development 323 1119 1.43 2.24× 10−13 2.44× 10−6 4.39 × 10−3

2 GO:0032502 developmental process 355 1253 1.40 2.02× 10−13 3.41× 10−6 4.39 × 10−3

3 GO:0032501 multicellular organismal process 382 1358 1.39 6.30× 10−14 2.79× 10−6 4.39 × 10−3

Table S7: GO enrichment for genes undergoing module rearrangement in conservative set of archi-
tecture families. See Table 2 for details. Here, n = 2506 and N = 12, 408, and we used a p-value cutoff of
p < .01.
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MERGES all w/o generation w/ generation

number of events 2559 1676 (65.5%) 883 (34.5%)
retained at least one split architecture 2392 (93.5%) 1620 (96.7%) 772 (87.4%)
retained both split architectures 1413 (55.2%) 1413 (84.3%) n/a

SPLITS all w/o loss w/ loss

number of events 2446 670 (27.4%) 1776 (72.6%)
retained merged architecture 465 (19.0%) 443 (66.1%) 22 (1.2%)

Table S8: Retainment of ancestral architectures by merge and split events in conservative set of
architecture families. See Table 3 for details.

species dist M S % dist % M (ratio) % S (ratio) % distl % Ml (ratiol) % Sl (ratiol)
dmel 11.23 174 122 2.9 6.8 (2.3) 4.2 (1.4) 3.7 13.7 (3.7) 5.2 (1.4)
dyak 8.57 110 309 2.2 4.3 (1.9) 10.7 (4.9) 2.8 8.7 (3.1) 13.5 (4.8)
dere 8.57 106 169 2.2 4.1 (1.9) 5.9 (2.7) 2.8 8.4 (3.0) 7.4 (2.6)
dana 53.40 146 271 13.8 5.7 (0.4) 9.4 (0.7) 17.6 11.5 (0.7) 11.9 (0.7)
dpse 55.80 170 248 14.4 6.6 (0.5) 8.6 (0.6) 18.4 13.4 (0.7) 10.9 (0.6)
dwil 62.49 146 293 16.1 5.7 (0.4) 10.2 (0.6) 20.6 11.5 (0.6) 12.8 (0.6)
dmoj 32.74 152 282 8.4 5.9 (0.7) 9.8 (1.2) 10.8 12.0 (1.1) 12.3 (1.1)
dvir 32.74 137 204 8.4 5.3 (0.6) 7.1 (0.8) 10.8 10.8 (1.0) 8.9 (0.8)
dgri 37.11 127 386 9.6 4.9 (0.5) 13.4 (1.4) 12.3 10.0 (0.8) 16.9 (1.4)
total 302.65 2567 2880 77.9 49.4 (0.6) 79.3 (1.0) - - -

Table S9: Lineage-specific merge and split events in conservative set of architecture families. See
Table S6 for details
.
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chimeric gene parental genes source citation detected reason not detected

CG10102 CG12505 (Arc1) E Z only one hit satisfies %id thr
CG12592 CG12819 (sle), CG18545 E R,Z under-clustered module instances
CG18853 CG12822, CG11205 (phr) E R,Z X
CG18217 CG17286 (spd-2), CG4098 E R,Z X
CG31332 (unc-115) CG31352 E Z X
CG31687 CG31688, CG2508 (cdc23) E R,Z X
CG33105 (p24-2) CG33104 (eca), CG31352 E Z X
CG32745 CG3458 (Top3β) E Z CG32745 became psuedogene
CG31864 (Qtzl) CG5202 (escl), CG12264 E R,Z frameshift
CG32744 (Ubi-p5E) CG11700 E Z X
CG18789 CG18787 E Z only one hit
CG17706 CG4211 (nonA) E Z only one hit; CG17706 became CG40282
CG32788 (Crg-1) CG12632 (fd3F) N Z only one hit
CG41454 CG33217 N Z only one hit
CG31054 CG4849 N Z only one hit
CG32318 CG9191 (Klp61F), CG9187 (psf1) N R,Z X
CG32821 CG12655 R Z X
CG40100 CG30022 U Z X
CG33221 CG33213 R Z only one hit satisfies %id thr
CG32733 CG9821 E Z X
CG12184 CG12179 U Z only one hit satisfies %id thr
CG12824 CG12825 R Z no hits
CG14810 CG14811 R Z only one hit
CG32584 CG15645 (cerv) N Z CG32583 split into CG42299/CG42300
CG17797 (Acp29AB) CG15818 E Z no hits satisfy %id thr
CG17440 CG17446 R Z X
CG13794 CG33296 N Z X
CG6900 CG6891 R Z only one hit
CG14666 (Tim17a2) CG10090 (Tim17a1) U Z X
CG32071 CG12522 (Gtp-bp) R Z no hits
CG14628 CG18823 U Z X
CG17472 CG31680 U Z only one hit
CG33317 CG3584 (qkr58E-3) R Z CG33317 became pseudogene
CG3410 (lectin-24A) CG7106 (lectin-28C) U Z no hits satisfy %id thr
CG9902 CG7692 U Z X
CG10991 CG9360 R Z no hits satisfy %id thr
CG7804 CG10327 (TBPH) U Z only one hit satisfies %id thr
CG9906 CG11958 (Cnx99A) R Z X
CG11235 CG11958 (Cnx99A) N Z X
CG31904 CG13796, CG7216 (Acp1) E R X
CG30457 CG10953, CG13705 E R no hits
CG17196 CG17197, CG17195 E R no hits satisfy %id thr
CG11961 CG9416, CG30049 E R X
CG3978 (pnr) CG9656 (grn), CG10278 (GATAe) E R X
CG6844 (nAcRα-96Ab) CG5610 (nAcRα-96Aa),

CG11348 (nAcRβ-64B)
E R X

CG6653 (Ugt86De) CG31002 (Gga), CG17200 (Ugt86Dg) E R overlapping alignments
CG31668 CG33124, CG8451 E R overlapping alignments

Table S10: Detection of previously identified chimeric genes. Chimeric sources are divided into ‘E’ (from
exons of another parental gene), ‘N’ (from intron or intergenic module), ‘R’ (simple tandem repeats or repetitive
elements) and ‘U’ (unknown sources). Citations are ‘R’ (Rogers et al. 2009), and ‘Z’ (Zhou et al. 2008). Hits refer
to LALIGN hits for the chimeric gene, e.g. only one LALIGN hit for the chimeric gene satisfied the percent identity
threshold.
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Online Supplementary Files

1 Analysis of 9 Drosophila genomes

flies9.stree, flies9.smap, flies9.names.txt : Phylogeny and species-to-gene map of 9 Drosophila

species used in our analysis.

flies9.ids.txt : Gene names.

regs.tar.gz : Modules and module families.

fams.txt, fams.ms.txt, fams.ms.cons.txt : Architecture families, “merge/split” architecture families,
and conservative “merge/split” architecture families.

fams.ms.tar.gz : For each architecture family, the extant architectures, bootstrapped gene trees, recon-
structed architecture scenario, and a figure of the reconstructed architecture scenario.

2 Catalog of genes grouped by mechanism of formation

nbrs.txt,nbrs genes.txt : Genes involved in fusion/fission of neighboring genes (either as a parent or
child), and whether they are supported by experimental evidence.

dupmerge.txt : Genes involved in large-loop mismatch repair or replication slippage.

retro.txt : Genes involved in fusion/fission via retrotransposition.

dupdeg.txt : Genes involved in duplication-degeneration.
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